Introduction

Causality is the basis for reasoning and decision making. While humanbeings use this psychological tool to choreograph their environment into a mental model to act accordingly, the inability to identify causal relationships is one of the drawbacks of current Artificial Intelligence systems. However, projection of causal relations in natural language enables machines to develop a better understanding of the surrounding context and helps downstream tasks such as question answering, text summarisation, and natural language inference.

Takeaways

- We propose a model which takes into account both syntactic and semantic dependency of words in a sentence.
- We propose to use a gradient reversal approach to minimise the distribution shift between the training and test datasets.
- To fill the gap of the current causality datasets on encompassing different types of causality, we introduce MEDCAUS, a dataset of 15,000 labelled sentences, retrieved from medical articles.

Graphical Causality Encoder (GCE)

Given $h_i^{(l-1)}$ as the representation of the node i at laye updates the node representation at layer l as follows:

$$\boldsymbol{h}_{i}^{(l)} = \boldsymbol{f}^{\text{actv}}(\sum_{j=1}^{n} \tilde{A}_{ij} \boldsymbol{W}^{(l)} \boldsymbol{h}_{j}^{(l-1)} / d_{i} + \boldsymbol{b}^{(l)})$$

After applying the BiLSTM and GCN, each sentence i as:

$$h_{\text{GCN}}(\boldsymbol{X}) = \boldsymbol{f}^{\text{pool}}(\text{GCN}(\text{BiLSTM}(\boldsymbol{X})))$$

$$m{f}_{m{ heta}_{ ext{enc}}}(m{X}) = ext{FFNN}([m{h}_{ ext{GCN}}(m{X});m{h}_{ ext{BiLSTM}}(m{X})]$$

For Task1, Causality Identification, we use this represe the probability of output classes,

 $P_{\boldsymbol{\theta}_{\text{class}}}(\text{causality}|\boldsymbol{X}) = \sigma(\boldsymbol{f}_{\boldsymbol{\theta}_{\text{enc}}}(\boldsymbol{X}).\boldsymbol{W}_{\text{class}} + b_{\text{class}})$ For Task2, Causality Localisation, the tags with the res token is identified by:

$$oldsymbol{s}(oldsymbol{X},oldsymbol{Y}) = \sum_{i=0}^{n} oldsymbol{f}_{oldsymbol{ heta}_{enc}}(oldsymbol{X})_{i,oldsymbol{y}_{i}} + \sum_{i=0}^{n} T_{oldsymbol{y}_{i},oldsymbol{y}_{i+1}}$$
 $P_{oldsymbol{ heta}_{seq}}(oldsymbol{Y}|oldsymbol{X}) = oldsymbol{s}(oldsymbol{X},oldsymbol{Y}) - log(\sum_{oldsymbol{y}\inoldsymbol{Y}_{oldsymbol{X}}} e^{s(oldsymbol{X},oldsymbol{y}_{i+1})})$

DOMAIN ADAPTATIVE CAUSALITY ENCODER

Farhad Moghimifar, Gholamreza Haffari, Mahsa Baktashmotlagh

Adaptive Causality Encoder (ACE)

In adaptive case, let us consider the following domain classifier, $P_{\boldsymbol{\theta}_{dom}}(source | \boldsymbol{X}) = \sigma(\boldsymbol{f}_{\boldsymbol{\theta}_{enc}}(\boldsymbol{X}).\boldsymbol{W})$

Our domain adversarial training objective is defined as,

$$\mathcal{L}(\boldsymbol{\theta}_{enc}, \boldsymbol{\theta}_{dom}, \boldsymbol{\theta}_{task}) := \sum_{(\boldsymbol{X}, Y) \in D_s} \log P_{\boldsymbol{\theta}_{dom}} \left(\sum_{\boldsymbol{X} \in D_s} \log P_{\boldsymbol{\theta}_{dom}} \right)$$
$$- \sum_{\boldsymbol{X} \in D_t} \log \left(1 - P_{\boldsymbol{\theta}_{dom}} \right) \left(s \right)$$

Experimental Results on GCE

					MI	EDCA	US		F
ver l –	I, GCN			Model	Ρ	R	F1		Ρ
				P-Wiki	74.4	74.4	74.	4 54	4.
	(1)			bi-LSTM	84.2	97.8	90.	5 8	1.
	(')			GCN	90.8	94.6	92.	78	35
is represented				C-GCN	91.2	94.9	93.	0 8	6.
				GCE	92.5	94.0	93.	2 84	4.
	(2)		The per	rformance	of ou	ir moo	del c	on C	a
)	(3)								
entation to get						Med	CAU	IS	
			Μ	odel	F	ן כ	7	F1	
ass)	(4)		bi	-LSTM-CF	RF 77	7.4 69	9.9	73.4	8
espect to each			G	CN-CRF	31	.9 46	6.8 (37.9	6
			C	-GCN-CR	F 72	2.5 7 5	5.9	74.1	
			S	-LSTM-CF	RF 58	8.6 64	4.0 6	61.2	6
	(5)		E	LMO-CRF	48	8.5 78	3.9 6	60.1	
			G	CE	76	5.3 73	3.6	74.9	
)	(6)	•	The pe	rformance	e of ol	ır mo	del	on C)a

 $P_{\boldsymbol{ heta}_{ ext{class}}}(Y|\boldsymbol{f}_{\boldsymbol{ heta}_{ ext{enc}}}(\boldsymbol{X}))$

 $(\text{source}|\boldsymbol{f}_{\boldsymbol{\theta}_{\text{enc}}}(\boldsymbol{X})))$

source $|f_{\theta_{enc}}(X))$.

(8)

(7)

FinCausal

R F1 .0 54.0 54.0 .3 77.0 79.1 5 74.8 79.6 **.1** 68.7 76.4 .8 **83.3 84** ausality Identification.

FinCausal R F1 Ρ **82.4** 65.0 72.7 66.1 55.5 60.3 76.3 68.8 72.3 61.5 29.7 40.0 71.8 61.3 66.1 79.2 **69.8 74.2** ausality Localisation.

	Med	Caus –	> BioCausa	Med	Caus -	ightarrow SemEva	al Med	Caus	ightarrow FinCausal	
Models	Ρ	R	F1	Ρ	R	F1	Р	R	F1	
bi-LSTM	76.1	57.6	66.0	82.5	62.8	71.3	47.6	8.3	14.2	
GCN	75.4	51.0	60.8	78.4	67.6	72.6	49.2	53.2	51.1	
C-GCN	71.3	42.9	55.3	84.1	70.8	76.9	48.7	52.3	50.4	
bi-LSTM+DA	75.6	58.9	66.2	81.6	69.5	75.1	47.9	61.1	53.7	
GCN+DA	72.8	70.3	71.5	82.9	66.7	73.9	46.8	57.4	51.6	
C-GCN+DA	78.4	55.5	65.1	81.9	71.0	76.1	49.1	54.6	52.7	
CDAN	85.5	50.1	63.8	84.6	73.8	78.8	43.6	53.3	48.0	
CDAN-E	83.8	55.0	66.4	81.2	74.2	77.6	48.3	63.3	54.8	
ACE	74.3	77.1	76.7	84.4	74.2	79.0	47.4	74.0	57.8	
The performance of our model on Causality Identification.										
		Med		- Sei	mEva	I MED	Caus	\rightarrow F	FinCausal	
Models		Ρ	R	F	1	Р	R		F1	
bi-LSTM		16.3	52.2	24	.9	64.1	16.1		25.8	
GCN		8.8	29.6	13	.5	41.6	40.9		41.0	
C-GCN		18.9	47.6	27	.1	63.8	13.0		21.6	
bi-LSTM-	⊦DA	51.2	42.0	46	.2	44.9	39.4		41.9	
GCN+DA		9.1	25.5	13	.4	39.6	45.2		42.2	
C-GCN+I	DA	45.1	42.1	43	.6	40.0	45.5		42.6	
CDAN		40.9	49.7	44	.8	36.9	42.8		39.6	
CDAN-E		47.3	40.6	43	.7	36.8	42.6		39.5	
ACE		42.3	53.6	47	.3	42.2	43.2		42.7	
The performance of our model on Causality Localisation.										

Data Visualisation

t-SNE visualisation of the domain adaptation task.

Experimental Results

