# Benchmarking of Transformer-Based Pre-Trained Models on Social Media Text Classification Datasets

### INTRODUCTION AND METHODOLOGY

transformer-based compared 3 We analyzing the (encoders), models performances between differences in domain-specific (medical), source-specific (social media), and generic pre-trained models.

- ClinicalBioBERT (CL) (Alsentzer et al., 2019): trained on PubMed research articles and clinical notes.
- BERTweet (BT) (Nguyen et al., 2020a): trained on English tweets.
- RoBERTa-base (RT) (Liu et al., 2019): trained on Book Corpus and English Wikipedia.

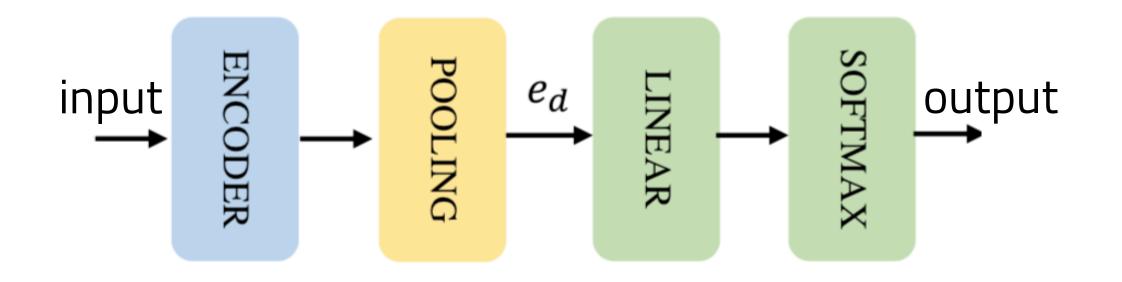



Figure 1: The framework for text classification.

- Input: training/test data
- Output:
  - Training phase: a probability vector used to compute a loss.
  - Inference phase: the class with the highest probability.

Yuting Guo<sup>\*1</sup>, Xiangjue Doing<sup>\*1</sup>, Mohammed Ali Al–Garadi<sup>2</sup>, Abeed Sarker<sup>2</sup>, Cécile Paris<sup>3</sup>, Diego Mollá–Aliod<sup>4</sup> <sup>1</sup>Department of Computer Science, <sup>2</sup>Department of Biomedical Informatics, Emory University <sup>3</sup>CSIRO Data61, <sup>4</sup>Department of Computing, Macquarie University

### **RESULTS AND DISCUSSION**

### Findings:

- Pre-training on relatively small source-specific data (e.g., BERTweet) may effectively benefit the downstream source-specific tasks. Large amount of pre-training data (e.g., RoBERTa-base) can boost the generalizability of models.
- Pre-training on small in-domain data (e.g., ClinicalBioBERT) may not benefit target tasks within the domain.

|            | Dataset        | TRN   | TST  | L  | S | RT   | BT          | CL   |
|------------|----------------|-------|------|----|---|------|-------------|------|
| Health     | ADR Detection  | 4318  | 1152 | 2  |   | 91.4 | 92.7        | 90.4 |
|            | BreastCancer   | 3513  | 1204 | 2  |   | 93.9 | 93.6        | 91.2 |
|            | PM Abuse       | 11829 | 3271 | 4  |   | 81.4 | 82.4        | 77.4 |
|            | SMM4H-17-task1 | 5340  | 6265 | 2  |   | 93.6 | 93.5        | 92.7 |
|            | SMM4H-17-task2 | 7291  | 5929 | 3  |   | 78.4 | <u>79.7</u> | 75.0 |
|            | WNUT-20-task2  | 6238  | 1000 | 2  |   | 89.1 | 88.3        | 86.5 |
| Non-Health | OLID-1         | 11916 | 860  | 2  |   | 85.1 | 85.2        | 83.5 |
|            | OLID-2         | 11916 | 240  | 2  |   | 89.4 | 90.0        | 89.0 |
|            | OLID-3         | 11916 | 213  | 3  |   | 69.5 | 70.0        | 66.4 |
|            | TRAC-1-1       | 11999 | 916  | 3  | f | 58.6 | 59.2        | 55.4 |
|            | TRAC-1-2       | 11999 | 1257 | 3  |   | 58.8 | <u>65.8</u> | 58.0 |
|            | TRAC-2-1       | 4263  | 1200 | 3  |   | 72.8 | 73.3        | 63.9 |
|            | TRAC-2-2       | 4263  | 1200 | 2  |   | 85.8 | 85.5        | 87.2 |
|            | sarcasm-1      | 3960  | 1800 | 2  | • | 67.3 | 69.5        | 64.6 |
|            | sarcasm-2      | 4500  | 1800 | 2  |   | 73.2 | <u>76.1</u> | 68.2 |
|            | CrowdFlower    | 28707 | 8101 | 13 |   | 39.9 | <u>41.3</u> | 38.8 |
|            | fb-arousal-1   | 2085  | 580  | 9  | f | 46.6 | 45.3        | 46.8 |
|            | fb-arousal-2   | 2088  | 590  | 9  | f | 54.9 | 54.8        | 54.1 |
|            | fb-valence-1   | 2064  | 595  | 8  | f | 60.2 | 64.4        | 54.5 |
|            | fb-valence-2   | 2066  | 604  | 9  | f | 52.8 | 52.6        | 45.9 |
|            | SemEval-18-A   | 1701  | 1002 | 4  |   | 52.3 | 54.6        | 46.0 |
|            | SemEval-18-F   | 2252  | 986  | 4  |   | 69.3 | 67.4        | 65.3 |
|            | SemEval-18-J   | 1616  | 1105 | 4  |   | 47.7 | <u>51.5</u> | 45.3 |
|            | SemEval-18-S   | 1533  | 975  | 4  |   | 54.9 | 53.9        | 48.4 |
|            | SemEval-18-V   | 1182  | 938  | 8  |   | 45.5 | 46.6        | 36.2 |

**Table 1:** Statistics of data sets and accuracies on the test splits. L: #classes; S: sources; bold: the best result; <u>underlined</u>: the statistically significant result compared to the next best model.

## Suggestions:

- rather than a domain-specific one.
- related social media tasks.

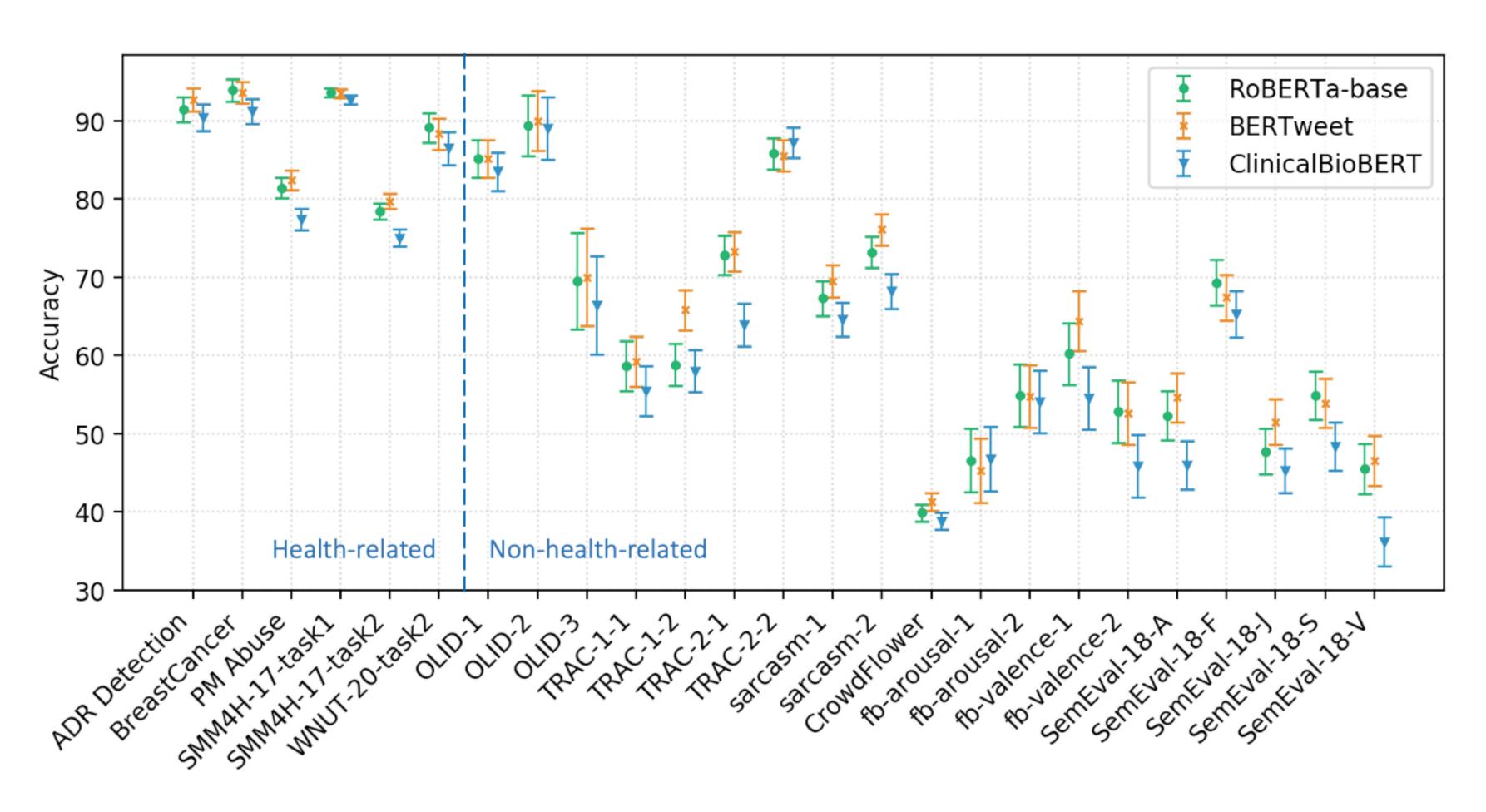



Figure 2: The 95% confidence intervals of the 3 models on our datasets.

### REFERENCES

- 2019.
- Liu, approach." arXiv. 2019
- Tweets." EMNLP. 2020.

For health-related tasks on social media, it might be better to choose a source-specific pre-trained model (e.g., BERTweet for social media)

For social media text classification tasks, we recommend the use of RoBERTa-base, BERTweet or models pre-trained in similar fashion; we do not recommend the use of ClinicalBioBERT, even for health-

Alsentzer, Emily, et al. "Publicly available clinical BERT embeddings." ClinicalNLP. Yinhan, et al. "Roberta: A robustly optimized bert pretraining • Nguyen, Dat Quoc et al. "BERTweet: A pre-trained language model for English