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Background

Motivation
• Finding information in a pandemic scenario presents new challenges as infor-

mation gradually becomes more available

• Contemporary deep learning LTR (Learning-To-Rank) methods rely on pres-
ence of large labeled corpora which is not available in a pandemic search sce-
nario

Dataset

*TREC COVID search The TREC COVID search task was organized, soon after
COVID-19 was declared a pandemic, by several institutions, such as NIST and
Allen Institute for AI. New search topics were added every few weeks as the
search needs of the population changed.

Documents

CORD-19 (The Covid-19 Open Research Dataset)1 is a dataset of research arti-
cles on coronaviruses (COVID19, SARS and MERS). It is compiled from three
sources: PubMed Central (PMC), the WHO articles, and bioRxiv and medRxiv.

Methodology

Main Problems

• In a pandemic “zero-day” scenario, there is no training data for deep learning
re-ranking solutions to operate.

• Solution: A universal sentence embedding model trained over the unlabeled
corpora to estimate document relevance.

• Compromise: The model hasn’t been trained to rank, thus we need to supple-
ment it with a feature-based ranking/scoring function.

Hybrid Search Model

We use a neural language model known as a sentence transformer, that can com-
pute universal sentence embeddings. We supplement it with a log-normalized
BM25 scoring function.

ψ(Ti, d) = logz(

t∈Ti∑ f∈d∑
BM25(t, f ))

+

t∈Ti∑ f∈d∑
cos(v(t), v(f )),

(1)

where z is a hyper-parameter, t ∈ Ti represents fields of the topic (i.e., query, nar-
rative and question), f ∈ d represents facets of the document (i.e., abstract, title,
body), BM25 denotes the BM25 scoring function, v(t) is the neural representation
of the topic field, v(f ) denotes the neural representation of the document facet,
and cos is cosine similarity.
The hyper-parameter z is solved for each topic with the formula:

z = Rcos
√
max(BM25(t, f )) (2)

where Rcos is the upper range of the summed cosine function:

Rcos = max(

t∈Ti∑ f∈d∑
cos(v(t), v(t))) (3)

Hybrid Index flowchart

Results

Key findings

• The neural components finds otherwise undiscovered relevant documents as it
can find documents with no word overlap with the search query.

• The neural component acts as a pseudo-reranking model.
It can efficiently rerank the entire corpus as the main performance penalty is
during indexing.

• Although not trained on any additional data, as the document corpus size in-
creases, the performance of the model increases.

Future Work

• Training the model with explicit ranking signals

• Apply to the model to more general tasks such as the biomedical domain
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