
Exploring Looping Effects in RNN-based Architectures
Andrei Shcherbakovµ Saliha MuradoğluΩΦ Ekaterina Vylomovaµ

sandreas@unimelb.edu.au, saliha.muradgolu@anu.edu.au, ekaterina.vylomova@unimelb.edu.au
µ The University of Melbourne ΩThe Australian National University (ANU) ΦARC Centre of Excellence for the Dynamics of Language (CoEDL)

Morphological reinflection task

Morphological inflection is the task of generating a target
word form (e.g., “runs”) from its lemma (“to run”) and a
set of target morphosyntactic features (tags, “Verb;Present
Tense;Singular;3rd Person”).

Data

Nen is a Papuan language of the Morehead-Maro (or Yam) family,
spoken in the Western province of Papua New Guinea by approx-
imately 400 people. The language is highly under-resourced, and
Muradoglu et al. (2020) is the only computational work on it we
are aware of, and in current study we use the data derived from
their corpus.
Russian, a Slavic language from Indo-European family, on the
other hand, is considered as high-resource. We use the splits from
the SIGMORPHON–CoNLL 2017 shared task on morphological
reinflection Cotterell et al. (2017).

Nen Russian
Training samples 1589 1000

Development samples 227 1000
Table: Dataset sizes

encoder decoder arg
max 

delay 

+ 

other cost terms 

Σ 

_ 

cost 

predicted 
character 

training 

Problem

repetitive loops, a common problem in contemporary text gen-
eration (such as machine translation, language modelling, mor-
phological inflection) systems.
Example (Nen language reinfletion):
ynawemaylmyylmyylmyylmy-
ylmyylmyymayamawemyymamyamawemyymamya-
mawemyymamyamawemyymamyamawemyymamyam-
awemyylmyamyamawemyymamyamawemyymamya-
mawemyylmyylmyy, where the correct form is ysnewem.

Architecture

We reused the hard attention model specifically designed for the
morphological reinflection task Aharoni and Goldberg (2017). The
model consists of two modules; (1) an array of LSTM Hochreiter
and Schmidhuber (1997) encoders and (2) an LSTM decoder.
We introduced an extra decoder output that is trained to always be
increasing while new output characters are produced. More specif-
ically, we added an extra output r and an extra input r̃ to the
decoder. To ensure that r increases gradually while target word
characters are generated, we modified calculation of total loss in
the model training, allowing an extra (hinge-like) term as follows:

L = max(0, γ · (s− ∆r)) (1)
Here ∆r is the difference between current and previous r values.
Initially, for every predicted word form r is set to zero. Having ob-
served the dynamics of r value in preliminary training experiments,
we chose γ = 50; s = 0.05.

Options

For better exploration of different factors, we tested
combinations of the following setting variations:

feeding r back to r̃ vs.
leaving it unused (let-
ting r̃ = 0) .

requiring r to increase
vs. leaving it free

scalar r vs. vector r

using an external auto-
incremented value for r vs.

r is an extra decoder
output

Summary of modes used in experiments
denotation goal for r r̃ value
n (“none”) none zero
i (“increment”) r is ablated incrementing
f (“feedback”) none previous r
u (“unused”) increase zero
s (“all set”) increase previous r

Note: if r is a vector, its size is added before a mode symbol: ‘3s’.

Hypothesis

We hypothesized that the looping is pri-
marily caused by merging of decoder
states relevant to different word posi-
tions. Therefore, introduction of vari-
ables that are guaranteed to be different
at distinct stages of output word form
production should reduce looped predic-
tion rate.

Finding

Presence of a decoder output which is
trained to progressively increment reduces
the average rate of looping sequences in mul-
tiple times. In most cases the positive effect
is more significant if this output is fed back
to the decoder.

Recommendation

(1) add an extra scalar output to the de-
coder
(2) endorse it to increase by inclusion a re-
spective term into a training loss formula,
and
(3) feed it back as an encoder input.

Results – Nen

0.0

0.2

0.4

10 20 30

epoch

lo
op

in
g 

co
un

t

mode
3s

f

i

n

s

u

Results – Russian

0

10

20

30

10 20 30

epoch

lo
op

in
g 

co
un

t


