

Problem

- Transform sentences into meaning representation
- Input sentence: Show me tomorrow flights from ci0 to ci1
- Output logic formule: (lambda \$0 e (and (flight \$0 (from \$0 ci0) (to \$0 ci1) (tomorrow \$0)))

Model

• Self-attention neural semantic parser with Transformer (see Vaswani et al. (2017)

Two Data Sets from Different Domains

- ATIS: queries from a flight booking system
- GEO: queries about US geographical information

Difficulty Levels

- anonymised variables
- non-anonymised variables (non-anon)
- question split (quest-split, based on input sequences)
- query split (based on the output sequence to ensure a more diverse set of logic formulae)

Data set	Input
ATIS	ground transport in ci0
ATIS non-anon quest-split	ground transport in Denver
GEO	how many citizen in s0
GEO non-anon quest-split	how many citizens in Alabama
GEO non-anon query-split	how many citizens in Boulder

	Data set	Train	Dev	Test
No. of	ATIS	4,434	491	448
Training (Train),	ATIS non-anon	4,029	504	504
	GEO	600	0	280
Development (Dev), and	GEO non-anon	583	15	279
Test (Test)	quest-split	542	140	100
Examples	GEO non-anon query-split	543	148	186
Input (I) and Output (O) Vocabulary Sizes.	Data set	I vo	cab	O voca

Entity anonymisation had a bigger impact on
the vocabulary size of the I than the O.

Transformer Semantic Parsing Gabriela Ferraro^{1,2} & Hanna Suominen^{2,1,3}

Data61, Commonwealth Scientific and Industrial Research Organisation, Australia Research School of Computer Science, The Australian National University, Australia Department of Future Technologies, University of Turku, Finland gabriela.ferraro@data61.csiro.au hanna.suominen@anu.edu.au

Output

(lambda \$0 e (and GT) (to_city ci0))) (lambda \$0 e (and (GT \$0) (to_city \$0 denver))) (population:i s0) (population alabama)

(population boulder)

Data set	I vocab	O vocab
ATIS	166	433
ATIS non-anon	444	887
GEO	51	120
GEO non-anon quest-split	141	243
GEO non-anon query-split	149	254

Experimental Results and Conclusions

• Transformer was competitive with other state-of-the-art models and outperformed strong baselines in some settings.

Model Comparison Using the Accuracy [%] on Anononymised Test Sets

Model	ATIS	GEO
Statistical Baselines		
ZC07 (Zettlemoyer and Collins, 2007)	84.6	86.07
TISP (Zhao and Huang, 2015)	84.2	88.9
Neural Baselines		
Seq2Seq + Attention (Dong and Lapata,	84.15	84.6
2016)		
Seq2Tree + Attention (Dong and Lap-	86.9	87.1
ata, 2016)		
ASN (Rabinovich et al., 2017)	85.3	85.7
ASN + Attention (Rabinovich et al.,	85.9	87.1
2017)		
coarse2fine (Dong and Lapata, 2018)	87.7	88.2
Our Neurals		
Bi-GRU	85.93	86.42
Transformer	87.95	86.78

• Our model became the new state-of-the-art on ATIS with its accuracy of 87.95%. • However, the best result on GEO was by a statistical semantic parser called Type-Driven Incremental Semantic Parsing (TISP).

Model Comparison Using the Accuracy [%] on Non-Anononymised Test Sets

Model	ATIS	GEO	GEO
	NA	NA	NA
		quest	query
		split	split
Seq2Seq + Attention	72.02	67.39	41.94
(Dong and Lapata,			
2016)			
coarse2fine (Dong and	79.1	72.4	52.69
Lapata, 2018)			
Bi-GRU	73.41	72.4	56.45
Transformer	75.99	75.27	63.98

• Results with anonymisation were always better than without.

• GEO query-split was harder than GEO question-split. • Our model learnt token attributes as opposed to only one-to-one mappings from an input to output.

Difficult Examples

• Considerable difference between the length of input sentences and their corresponding logical formulae resulted in 0 accuracy.

Data set	Input	Output	
ATIS	fare code fb0 what doe that mean	fb0	
	what type of plane is a ac0	ac0	
GEO	what is the average population per square km in s0	density:i s0	
	what is the length of the r0 in s0	len:i r0	

